How to recreate “Geocache on the Rocks” (GC3NEYY)

By: fogg

One of the ways of designing fun geocaches is to make people interact with the
geocache. For example, you could use microcontrollers, digital sensors and actuators to
create little gadgets that the geocachers have to play with before they get the next clue
(coordinates or code). One of the more popular ways of creating these gadgets is by
using the Arduino computing platform. A basic knowledge of computing, hardware and
programming is helpful to get started in this project.

These instructions will show you how to create a geocache similar to Geocache on the
Rocks. This is a multicache, where at the first stage you have to lower the temperature of
the geocache to a certain degree in order to get the coordinates for the final stage.




Supplies:

Basic knowledge of C++ programming and hardware building
Arduino board

Temperature sensor DS18B20

ATtiny84 or similar

LED display

Preform Tube or similar

Various wiring

Soldering iron

Battery

*You may need other parts depending on your geocache’s specific configuration.
How to Build:

1. Begin With a Crazy Idea

It always starts with a crazy idea, such as: “Let us send the geocachers to the top of the
hill before they get the coordinates” or “the geocachers have to cool down the gadget to
the freezing point before they get the clue.” Then you have to research to see how you
can make that idea come to life. If Arduino is a method to realize your idea, research
whether there are sensors that you can use to detect whether the geocacher actually did
what you asked for. In our cases, temperature sensors would do the trick.

2. But will it work?

The first step is prototyping. This will help you get a basic idea of whether or not your
idea will actually work. A good choice is to begin with the Open Source/Open Hardware
Arduino platform. There are many different types of Arduinos, but an Arduino Pro Mini is
a good choice since it fits easily on a prototyping breadboard. However, all versions of
the Arduino will do. The Arduino comes with a programming environment that supports
the programming language C++ and makes programming it a piece of cake. In fact, you
can easily find a variety of code libraries that will help interface with many different
sensors.

For our uses, we have chosen the temperature sensor DS18B20. There is an OneWire
Arduino library which helps you with the nitty-gritty details of talking with this sensor.
Using all this, you can set up a first prototype on a breadboard in less than 30 minutes
and check it out. With another 30 minutes or so, you may be able to add a
seven-segment LED display as a means to output the clue.



3. Honey, I shrunk the Arduino

While the Arduino is a nice tool for prototyping, it is not the ideal platform for creating a
physical computing geocache. It’s too large and wastes too much energy. In effect, it
can'’t be used in a battery-based system that is supposed to run on the same battery for
years. If you use a large enough enclosure for your gadget and ask the geocacher to
bring a battery, then things might work out. In our case, though, we wanted to squeeze
everything in a small tube. In order to accomplish this, a smaller, cheaper and less
powerful microcontroller (ATtiny84) was used. This is also supported by the Arduino
programming environment.

If you want to power your gadget with a 3.6V Lithium battery with an AA form factor (which
may last up to 10 years!), the printed circuit board fitting into the larger preform tubes
should not be larger than 3.35”x0.62”. Fitting all the components on such a board means
that you should design your own printed circuit board. This is, in fact, is less of a problem
that one might think. There are a number of free hobbyist versions of programs around
(e.g., Eagle or Target 3000) which one can use for small projects.

You can then send the design files to a printer circuit board (PCB) producer. The PCBs



are usually created within a few weeks.

After receiving them, you can just solder the electronic components to the board. The
whole step 3 will probably take a couple weeks, mainly because you have to wait for the
PCBs. However, in the meantime you can work on the software.

4. The Hard(ware) part is over

With the hardware ready, the rest should be easy—one would think. However, the
software developed in step 2 is probably not ready to control the gadget without a
problem. The next step is debugging and refining. Be sure to carefully analyze what
situations can come up in the field and how to save as much energy as possible.

The main tool for the design here is the notion of a finite state machine. That means that
you enumerate the possible states your gadget might be in, such as sleeping, waking up,
measuring, showing the coordinates or low battery state. As a next step, you describe
what the gadget should do while in each particular state and how it changes states. With
that, you have a pretty good idea of what the gadget will do and how to translate this into
a C++ program. | prefer to test the program initially using the original Arduino platform
because you can get debugging messages through the serial interface, which you do not
have on the ATtinys. And if everything works, | switch to the ATtiny, making small
changes to the program if necessary.



ce2 | Arduino 1.0.5

Oo B In einem neuen Fenster &ffnen

ice2

Ll

/4 Developed on @ Pro Mini, deployed on an Attinysd q

#include vr/panspace.h=
#include <ovr/wdt .h>
#include vr/sleep.hx>
#include -ovr/eeprom.h=
#include <neilirve.h=

/¢ CHANGE MEXT TWO LINES!
uint8_t defeoords[] = { 2, 9, 5, 8, 2, 7 }; // defoult coovds
#define TEMP_THRESH 2.8 // degrees o 10

/¢ EHD OF CHANGE #¥thiibiontnonton

e S R
uint8_t coords[6] EEMEM;

/¢ #define DEBUGVOLT 1
#define COORDSHOW 4 -/
#define PCEYERSION 8/ cor 1 open-vi board
#define ERROR_THRESH & /.
M disploy times %/
#define DISPLAY_ON_MSECS &880
#define DISPLAY_OFF_MSECS 388 |
#define DEEPSLEEP_SECS 12Z@ /. how
#define MAx_MOCHANGE_MSECS lzm@@sul
#define Mix_WakEUP_MSEC: auL
#define MIN_BUMPS 5 //
#define READY Mix 3 //
C

ep of ter displaying coords
eads to sleep

lvan’Fi)lders;’tdpr‘}Zi bz 32 jv3izwrqgSykhp_gh@@08gq/T/build1194315025745649319 . tmp/i
ce3.cpp.hex
Bindre SketchgriBe: 12.@58 Bytes (von einem Maximum von 38.720 Bytes)

1 Arduing Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega328 on /dev/tty.usbserial-A900ccaj

5. Made for eternity

Geocaches are definitely not made for eternity, but they should last for a long time with
proper maintenance. In order for a physical computing geocache to be sustainable,
electrical power and energy consumption are key factors. With the described design, i.e.
Lithium batteries, very low-energy processors with a quiescent current of around 2 pA
and a maximum current of 2mAh per visit, the cache can easily last for 10 years and 500
visits.

Another key factor is the robustness of the software. Good software will ensure that the
gadget runs without software updates for 10 years without a glitch. To do this, test your
software extensively and make sure your software can recover from unforeseen
circumstances. It's a good idea to ask others to play around with the geocache before
you deploy it. You can’t imagine what they will do to your little gadget.

However, even with a good design and testing, it may be necessary to correct errors in
the field. That's why it's a good idea to design them in a way that even after deployment
you can change the software.



